Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels.
نویسندگان
چکیده
Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure planar phospholipid bilayers. These digitoxin channels are blocked by Al(3+) and La(3+) but not by Mg(2+) or the classical l-type calcium channel blocker, nitrendipine. In bilayers, we find that the chemistry of the lipid affects the kinetics of the digitoxin channel activity, but not the cation selectivity. Antibodies against digitoxin promptly neutralize digitoxin channels in both cells and bilayers. We propose that these digitoxin calcium channels may be part of the mechanism by which digitoxin and other active cardiac glycosides, such as digoxin, exert system-wide actions at and above the therapeutic concentration range.
منابع مشابه
Determining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملThe virally encoded fungal toxin KP4 specifically blocks L-type voltage-gated calcium channels.
KP4 is a virally encoded fungal toxin secreted by the P4 killer strain of Ustilago maydis. Previous studies demonstrated that this toxin inhibits growth of the target fungal cells by blocking calcium uptake rather than forming channels, as had been suggested previously. Unexpectedly, this toxin was also shown to inhibit voltage-gated calcium channel activity in mammalian cells. We used whole-ce...
متن کاملIron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade
BACKGROUND Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) ...
متن کاملAlterations of calcium channels in vascular smooth muscle cells from spontaneously hypertensive rats.
We examined the possible alterations in calcium handling through the calcium channels of spontaneously hypertensive rats (SHR) using 45Ca2+ uptake measurements in cultured aortic cells. Primary cultures of vascular smooth muscle cells (VSMC) were obtained by enzymatic dissociation of the thoracic aortas from 8-week-old SHR and age-matched Wistar-Kyoto rats (WKY). The functions of voltage sensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 7 شماره
صفحات -
تاریخ انتشار 2008